Glass-Forming Ability and Early Crystallization Kinetics of Novel Cu-Zr-Al-Co Bulk Metallic Glasses

نویسندگان

  • Xiaoliang Han
  • Yusheng Qin
  • Kai Qin
  • Xuelian Li
  • Shenghai Wang
  • Jun Mi
  • Kaikai Song
  • Li Wang
  • Hugo F. Lopez
چکیده

In recent years, CuZr-based bulk metallic glass (BMG) composites ductilized by a shape memory B2 CuZr phase have attracted great attention owing to their outstanding mechanical properties. However, the B2 CuZr phase for most CuZr-based glass-forming compositions is only stable at very high temperatures, leading to the uncontrollable formation of B2 crystals during quenching. In this work, by introducing Co (i.e., 4, 5, and 6 at. %) and 10 at. % Al into CuZr-based alloys, the relatively good glass-forming ability (GFA) of CuZr-based alloys still can be achieved. Meanwhile, the B2 phase can be successfully stabilized to lower temperatures than the final temperatures of crystallization upon heating CuZr-based BMGs. Unlike previous reported CuZr-based BMGs, the primary crystallization products upon heating are mainly B2 CuZr crystals but not CuZr2 and Cu10Zr7 crystals. Furthermore, the primary precipitates during solidification are still dominated by B2 crystals, whose percolation threshold is detected to lie between 10 ± 2 vol. % and 31 ± 2 vol. %. The crystallization kinetics underlying the precipitation of B2 crystals was also investigated. Our results show that the present glass-forming composites are promising candidates for the fabrication of ductile CuZr-based BMG composites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural study of conventional and bulk metallic glasses during annealing

Metallic glasses with conventional glass-forming ability (Al-Fe-Nd, Fe-Zr-B, Fe-B-Nb compositions) and bulk metallic glasses (Ca-Mg-Cu compositions) were studied by synchrotron X-ray diffraction during annealing throughout glass transition and crystallization temperatures. The analysis of the first diffraction peak position during the annealing process allowed us to follow the free volume chang...

متن کامل

Fragility of iron-based glasses

Related Articles The electronic structure origin for ultrahigh glass-forming ability of the FeCoCrMoCBY alloy system J. Appl. Phys. 110, 033720 (2011) Enhancement of glass-forming ability and corrosion resistance of Zr-based Zr-Ni-Al bulk metallic glasses with minor addition of Nb J. Appl. Phys. 110, 023513 (2011) Structural origin underlying poor glass forming ability of Al metallic glass J. A...

متن کامل

Phase Separation and Crystallization in Cu-Zr Metallic Glasses

The structural behavior of rapidly quenched Cu-Zr amorphous alloys was analyzed. High energy X-ray diffraction patterns and atomic pair correlation functions exhibit monotonic changes with composition. The experimental results can be well described by a solid solution-like replacement of Cu and Zr atoms in the whole composition range. No indications are observed that would support the existence...

متن کامل

Inhomogeneous structure and glass-forming ability in Zr-based bulk metallic glasses

Recently, a series of quaternary Zr-based bulk metallic glasses (BMGs), i.e., Zr53Cu18.7Ni12Al16.3, Zr51.9Cu23.3Ni10.5Al14.3 and Zr50.7Cu28Ni9Al12.3, have been developed and their glass-forming ability (GFA) increases with Cu concentration. In this work, atomic structures of the three BMGs were rebuilt by reverse Monte Carlo simulations based on the reduced pair distribution functions measured ...

متن کامل

Formation of Ti-Zr-Cu-Ni bulk metallic glasses

Formation of bulk metallic glass in quaternary Ti-Zr-Cu-Ni alloys by relatively slow cooling from the melt is reported. Thick strips of metallic glass were obtained by the method of metal mold casting. The glass forming ability of the quaternary alloys exceeds that of binary or ternary alloys containing the same elements due to the complexity of the system. The best glass forming alloys such as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016